Fixed point characterization of left amenable Lau algebras

نویسنده

  • Rasoul Nasr-Isfahani
چکیده

The present paper deals with the concept of left amenability for a wide range of Banach algebras known as Lau algebras. It gives a fixed point property characterizing left amenable Lau algebras in terms of left Banach -modules. It also offers an application of this result to some Lau algebras related to a locally compact group G, such as the Eymard-Fourier algebra A(G), the Fourier-Stieltjes algebra B(G), the group algebra L1(G), and the measure algebra M(G). In particular, it presents some equivalent statements which characterize amenability of locally compact groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Module amenability and module biprojectivity of θ-Lau product of Banach algebras

In this paper we study the relation between module amenability of $theta$-Lau product $A×_theta B$ and that of Banach algebras $A, B$. We also discuss module biprojectivity of $A×theta B$. As a consequent we will see that for an inverse semigroup $S$, $l^1(S)×_theta l^1(S)$ is module amenable if and only if $S$ is amenable.

متن کامل

Cyclic amenability of Lau product and module extension Banach algebras

Recently, some results have been obtained on the (approximate) cyclic amenability of Lau product of two Banach algebras. In this paper, by characterizing of cyclic derivations on Lau product and module extension Banach algebras, we present general necessary and sufficient conditions for those to be (approximate) cyclic amenable. This not only provides new results on (approximate) cyclic amenabi...

متن کامل

Characterizations of amenable hypergroups

Let $K$ be a locally compact hypergroup with left Haar measure and let $L^1(K)$ be the complex Lebesgue space associated with it. Let $L^infty(K)$ be the dual of $L^1(K)$. The purpose of this paper is to present some necessary and sufficient conditions for $L^infty(K)^*$ to have a topologically left invariant mean. Some characterizations of amenable hypergroups are given.

متن کامل

Fixed point approach to the Hyers-Ulam-Rassias approximation‎ ‎of homomorphisms and derivations on Non-Archimedean random Lie $C^*$-algebras

‎In this paper‎, ‎using fixed point method‎, ‎we prove the generalized Hyers-Ulam stability of‎ ‎random homomorphisms in random $C^*$-algebras and random Lie $C^*$-algebras‎ ‎and of derivations on Non-Archimedean random C$^*$-algebras and Non-Archimedean random Lie C$^*$-algebras for‎ ‎the following $m$-variable additive functional equation:‎ ‎$$sum_{i=1}^m f(x_i)=frac{1}{2m}left[sum_{i=1}^mfle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2004  شماره 

صفحات  -

تاریخ انتشار 2004